Transversal numbers of uniform hypergraphs

نویسنده

  • Noga Alon
چکیده

The transversal number ~(H) of a hypergraph H is the minimum eardinality of a set of vertices that intersects all edges of H. For k ~ 1 define ck = supz(H)/(ra + n), where H ranges over all k-uniform hypergraphs with n vertices and m edges. Applying probabilistic arguments we show that ck = (1 + o ( 1 ) ) ~ , r . This settles a problem of Tuza. t ~

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An upper bound for the transversal numbers of 4-uniform hypergraphs

The main purpose of this paper is to prove that if H is a 4-uniform hypergraph with n vertices and m edges, then the transversal number r(H) <2(m +n)/9. All standard terminology of hypergraphs is from [ 11. Suppose H = (V, E) is a k-uniform hypergraph with n vertices and m edges. Tuza [2] proposed the problem of finding an upper bound for the transversal number r(H), of the form t(H) < ck(n + m...

متن کامل

Total Transversals and Total Domination in Uniform Hypergraphs

In 2012, the first three authors established a relationship between the transversal number and the domination number of uniform hypergraphs. In this paper, we establish a relationship between the total transversal number and the total domination number of uniform hypergraphs. We prove tight asymptotic upper bounds on the total transversal number in terms of the number of vertices, the number of...

متن کامل

EMBEDDINGS AND RAMSEY NUMBERS OF SPARSE k-UNIFORM HYPERGRAPHS

Chvátal, Rödl, Szemerédi and Trotter [3] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In [6, 23] the same result was proved for 3-uniform hypergraphs. Here we extend this result to k-uniform hypergraphs for any integer k ≥ 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for k-uniform hypergraphs of boun...

متن کامل

3-Uniform hypergraphs of bounded degree have linear Ramsey numbers

Chvátal, Rödl, Szemerédi and Trotter [1] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. We prove that the same holds for 3-uniform hypergraphs. The main new tool which we prove and use is an embedding lemma for 3-uniform hypergraphs of bounded maximum degree into suitable 3-uniform ‘pseudo-random’ hypergraphs. keywords: hypergraphs; regularity lemm...

متن کامل

Transversals in uniform hypergraphs with property (7, 2)

Let f(r; p; t) (p¿ t¿1, r¿2) be the maximum of the cardinality of a minimum transversal over all r-uniform hypergraphs H possessing the property that every subhypergraph of H with p edges has a transversal of size t. The values of f(r; p; 2) for p=3; 4; 5; 6 were found in Erdős et al. (Siberian Adv. Math. 2 (1992) 82–88). We give bounds on f(r; 7; 2), partially answering a question in Erdős et ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1990